

MODULE SPECIFICATION

Module Code:	ENG357			
Module Title: Mechanical Science				
Level:	3	Credit Value:	20	
Cost Centre(s):	GAAE	JACS3 code:	H100	

Faculty:	Faculty of Art, Science and Technology	Module Leader:	N. Vidmer	
Scheduled le	earning and teaching hours			40 hrs
Guided independent study				160 hrs
Placement				0 hrs
Module duration (total hours)				200 hrs

Programme(s) in which to be offered (not including exit awards)	Core	Option
BEng (Hons) Aeronautical and Mechanical Engineering (with Foundation Year)	√	
BEng (Hons) Electrical and Electronic Engineering (with Foundation Year)	~	
BEng (Hons) Automotive Engineering (with Foundation Year)	✓	
BEng (Hons) Renewable and Sustainable Engineering (with Foundation Year)	√	
BEng (Hons) Automation Engineering	\checkmark	

Pre-requisites	
None	

Office use only

Initial approval:	12/12/2018
With effect from:	01/09/2019
Date and details of	of revision:

Version no:1

Version no:

Module Aims

To attain the basic knowledge and key skills in mechanical engineering science in order to apply the principles of solid mechanics to solve problems in practical situations;

To analyse the behaviour of solid bodies subjected to various type of loading

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At the end of this module, students will be able to		Key Skills		
	Use fundamental and derived quantities with their correct		KS4	
1	units in statements and equations, and demonstrate ability to convert in order to express quantities in different units;	KS10		
	Describe the basic characteristics of simple engineering	KS1	KS4	
	materials and relate their properties to typical applications;	KS10		
3	Undertake practical work and write laboratory reports following technical report writing conventions;	KS1	KS3	
		KS5	KS6	
4	Analyse mechanical systems, demonstrating awareness of environmental and sustainability issues.	KS1	KS3	
		KS5	KS10	
Transferable skills and other attributes				
Problem solving;				
Mathematical applications;				
Design, analysis, and synthesis.				

Derogations

N/A

Assessment:

Indicative Assessment Tasks:

<u>Assessment One:</u> is by mean of a Portfolio of coursework and laboratory exercises spread throughout this part of the module, covering outcomes 1, 2, 3 and 4. A typical laboratory exercise is the analysis of Hooke's Law. The student would then produce a written report of the findings covering outcomes 1, 2, 3, and 4.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1,2,3,4	Portfolio	100%	n/a	2,500

Learning and Teaching Strategies:

The module will be presented to students through a series of lectures and learning reinforced through module tutor guided and self-directed study and interactive problem-solving tutorial sessions utilising laboratory equipment where appropriate.

Formative assessment takes place throughout the module and feedback is given during these tutorials.

Syllabus outline:

Introduction: ISO units, Newton's laws.

Scalar quantities.

Vector quantities.

Engineering indices.

Properties of Engineering Materials: Basic properties of engineering materials. Elasticity, plasticity, work hardening and failure. Hardness and toughness.

Forces in 2-Dimensions: Forces and turning moments, free body diagrams, forces and angles. Centres of gravity.

Friction: Limiting condition, sliding on flat and inclined surfaces.

Simply Loaded Beams: Shear force and bending moments. Introduction to torsion in beams. **Dynamics**: Linear and angular motion: displacement, velocity, and uniform acceleration. **Energy**: Work done, potential energy and kinetic energy. Power.

Basic Thermodynamics: Heat energy, temperature, thermal expansion and temperature stresses.

Engineering and the Environment: Awareness of environmental science relating to engineering. Engineering and sustainability.

Indicative Bibliography:

Reading lists will be provided in advance of each lecture as per subject basis, along with relevant academic papers and articles.

Essential reading

Bird, J. and Ross, C. (2015), *Mechanical Engineering Principles.* 3rd ed. Abingdon, Oxon: Routledge.

Hibbeler, R.C. (2017), Engineering Mechanics: Statics. 14th ed. Hoboken: Pearson.

Other indicative reading

Bolton, W. (2006) *Mechanical Science*, 3rd Edn., Blackwell Publishing.

Benham, P.P. et al. (1996) *Mechanics of Engineering Materials*, 2nd Edn., Prentice Hall. Case, J. et al. (1999) *Strength of Materials and Structures*, 4th Edn., Butterworth-Heinemann Ltd.

Ashby, M.F. (2010) *Materials Selection in Mechanical Design*, 4th Edn., Butterworth-Heinemann Ltd.